Code Yarns ‍👨‍💻
Tech BlogPersonal Blog

Depth and type of matrix in OpenCV

📅 2015-Aug-27 ⬩ ✍️ Ashwin Nanjappa ⬩ 🏷️ depth, mat, opencv, type ⬩ 📚 Archive

cv::Mat is the most fundamental datatype used in OpenCV. It can be used to store 2D images with 1-4 channels of data.

When your code receives a cv::Mat from an external library or code, the most common question you have is what is the data type of the elements of this image? There seem to be two methods in the cv::Mat class that answer this: depth() and type().

Depth

Depth is the more fundamental of the two queries. It is the data type of each individual element in the image data. It can take one of these 8 values:

#define CV_8U   0
#define CV_8S   1
#define CV_16U  2
#define CV_16S  3
#define CV_32S  4
#define CV_32F  5
#define CV_64F  6
#define CV_USRTYPE1 7

For example, an image with 2 channels of unsigned short data will have depth of CV_16U.

Type

Type combines the data type of the elements along with the number of channels in the image. Since images in OpenCV can have 1-4 channels, it can take one of these 28 values:

#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)

#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)

#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)

#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)

#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)

#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)

#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)

For example, an image with 2 channels of unsigned short data will have type of CV_16UC2.

Here are two simple functions that are handy to get the depth and type of image as a string:

std::string GetMatDepth(const cv::Mat& mat)
{
    const int depth = mat.depth();

    switch (depth)
    {
    case CV_8U:  return "CV_8U";
    case CV_8S:  return "CV_8S";
    case CV_16U: return "CV_16U";
    case CV_16S: return "CV_16S";
    case CV_32S: return "CV_32S";
    case CV_32F: return "CV_32F";
    case CV_64F: return "CV_64F";
    default:
        return "Invalid depth type of matrix!";
    }
}

std::string GetMatType(const cv::Mat& mat)
{
    const int mtype = mat.type();

    switch (mtype)
    {
    case CV_8UC1:  return "CV_8UC1";
    case CV_8UC2:  return "CV_8UC2";
    case CV_8UC3:  return "CV_8UC3";
    case CV_8UC4:  return "CV_8UC4";

    case CV_8SC1:  return "CV_8SC1";
    case CV_8SC2:  return "CV_8SC2";
    case CV_8SC3:  return "CV_8SC3";
    case CV_8SC4:  return "CV_8SC4";

    case CV_16UC1: return "CV_16UC1";
    case CV_16UC2: return "CV_16UC2";
    case CV_16UC3: return "CV_16UC3";
    case CV_16UC4: return "CV_16UC4";

    case CV_16SC1: return "CV_16SC1";
    case CV_16SC2: return "CV_16SC2";
    case CV_16SC3: return "CV_16SC3";
    case CV_16SC4: return "CV_16SC4";

    case CV_32SC1: return "CV_32SC1";
    case CV_32SC2: return "CV_32SC2";
    case CV_32SC3: return "CV_32SC3";
    case CV_32SC4: return "CV_32SC4";

    case CV_32FC1: return "CV_32FC1";
    case CV_32FC2: return "CV_32FC2";
    case CV_32FC3: return "CV_32FC3";
    case CV_32FC4: return "CV_32FC4";

    case CV_64FC1: return "CV_64FC1";
    case CV_64FC2: return "CV_64FC2";
    case CV_64FC3: return "CV_64FC3";
    case CV_64FC4: return "CV_64FC4";

    default:
        return "Invalid type of matrix!";
    }
}

Reference: modules/core/include/opencv2/core/hal/interface.h in OpenCV source code


© 2022 Ashwin Nanjappa • All writing under CC BY-SA license • 🐘 @codeyarns@hachyderm.io📧