An examination of C++ virtual functions

Virtual functions are a key feature of C++ to enable runtime polymorphism. This post is my attempt in understanding how they are implemented and executed at runtime. The compiler used is GCC 5.4.0 on Ubuntu 16.04.

Here is a simple program that uses virtual functions that we will use as an example:

To aid us in understanding what this code is compiled into, we request GCC to add debugging information (using option -g) when we compile it:

$ g++ -g virtual_function_example.cpp
$ ./a.out
In B

Almost all C++ compilers implement virtual functions by using virtual tables, more commonly called as vtables. This is a table of function addresses, one for each virtual function in the class. One virtual table is created for each class that has virtual functions.

We can see the existence of the methods and virtual tables of each class and their addresses by examining the binary:

$ readelf --symbols a.out | c++filt | grep -E "vtable|A::|B::"

    86: 0000000000400936    11 FUNC    WEAK   DEFAULT   14 A::do_something()
    81: 0000000000400942    30 FUNC    WEAK   DEFAULT   14 A::do_something2()
    87: 0000000000400960    11 FUNC    WEAK   DEFAULT   14 B::do_something()
    84: 000000000040096c    30 FUNC    WEAK   DEFAULT   14 B::do_something2()
    60: 000000000040098a    23 FUNC    WEAK   DEFAULT   14 A::A()
    69: 00000000004009a2    39 FUNC    WEAK   DEFAULT   14 B::B()
    92: 0000000000400a68    32 OBJECT  WEAK   DEFAULT   16 vtable for B
    63: 0000000000400a88    32 OBJECT  WEAK   DEFAULT   16 vtable for A

Here we use the readelf program to extract the symbols from the binary. The symbols are in mangled form that is difficult to decipher for humans. So, we pipe it through a demangler.

Here is the output I got on my computer:

(Click to enlarge)

We can check which sections of virtual memory the class methods and virtual tables will be loaded into by examining the sections of the binary:

$ readelf --sections a.out
There are 37 section headers, starting at offset 0x6b78:

Section Headers:
  [Nr] Name              Type            Address          Off    Size   ES Flg Lk Inf Al
  [..]
  [14] .text             PROGBITS        00000000004007a0 0007a0 0002a2 00  AX  0   0 16
  [..]
  [16] .rodata           PROGBITS        0000000000400a50 000a50 00008b 00   A  0   0  8
  [..]

Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

We can cross-examine the addresses of the class methods and virtual tables with the starting addresses and sizes of the sections. We see that the class methods will be loaded into the .text section and the virtual tables into the .rodata segment. The flags of these sections indicate that only the .text section is executable, as it should be.

(Click to enlarge)

Finally, let us examine how the virtual tables are used at runtime to determine which method to execute. To do this, we disassemble the binary instructions in the binary:

$ objdump --disassemble --demangle --source a.out

int main()
{
  400896:       55                      push   %rbp
  400897:       48 89 e5                mov    %rsp,%rbp
  40089a:       53                      push   %rbx
  40089b:       48 83 ec 18             sub    $0x18,%rsp
    A* a = new B();
  40089f:       bf 08 00 00 00          mov    $0x8,%edi
  4008a4:       e8 d7 fe ff ff          callq  400780 <operator new(unsigned long)@plt>
  4008a9:       48 89 c3                mov    %rax,%rbx
  4008ac:       48 c7 03 00 00 00 00    movq   $0x0,(%rbx)
  4008b3:       48 89 df                mov    %rbx,%rdi
  4008b6:       e8 e7 00 00 00          callq  4009a2 <B::B()>
  4008bb:       48 89 5d e8             mov    %rbx,-0x18(%rbp)
    a->do_something2();
  4008bf:       48 8b 45 e8             mov    -0x18(%rbp),%rax
  4008c3:       48 8b 00                mov    (%rax),%rax
  4008c6:       48 83 c0 08             add    $0x8,%rax
  4008ca:       48 8b 00                mov    (%rax),%rax
  4008cd:       48 8b 55 e8             mov    -0x18(%rbp),%rdx
  4008d1:       48 89 d7                mov    %rdx,%rdi
  4008d4:       ff d0                   callq  *%rax

  4008d6:       b8 00 00 00 00          mov    $0x0,%eax
    return 0;
  4008db:       48 83 c4 18             add    $0x18,%rsp
  4008df:       5b                      pop    %rbx
  4008e0:       5d                      pop    %rbp
  4008e1:       c3                      retq

From the output of objdump, only the disassembly of the main function is shown above. In the above command, we have requested objdump to --disassemble the binary code to assembly code, to --demangle the symbol names to human readable form and to annotate the disassembly with the original C++ --source statements.

By examining the disassembled code, the runtime mystery is revealed. We need to note that every object of a class, that has virtual methods, stores a pointer to its class virtual table. On a 64-bit computer, this means that objects of such classes need extra space of 8 bytes. This pointer is placed at the beginning of the memory layout of the object, even before other members of the object.

When you call a virtual method in C++ code, the compiler generates these instructions:

  • Jump to the beginning of the object. This is a location on the heap or stack, depending on how the object was created. This is where a pointer to its class virtual table is stored.
  • Jump to the start of the class virtual table. This is a location in the .rodata section of the process virtual memory, as we noted earlier.
  • Depending on which virtual method is needed, jump to that entry in the virtual table. This entry has the address of that virtual method.
  • Finally, jump to the address of the virtual method and start executing its instructions. This is in the .text section of the process virtual memory.

Here is an illustration of the code disassembly:

(Click to enlarge)
Advertisements

Always make base class destructor as virtual in C++

TLDR: The title of this post says it all!

If you are having a class hierarchy, with base class and derived classes, then try to always make the base class destructor as virtual.

I recently noticed an application having a serious memory leak after merging some code. Other than the leak, everything else about the code was executing fine! After debugging the code, the culprit turned out to be a base class destructor that was not virtual. If only the above rule had been followed diligently, the error would have been caught easily.

Why this rule? The reason for this rule is pretty simple. A derived class destructor might be deallocating objects or freeing memory that it had allocated earlier during its creation or execution. Now think about the scenario where this derived class object is held using a base class pointer and it is freed.

  • If base class destructor is not virtual: Only the base class destructor is called, thus causing a memory leak.

  • If base class destructor is virtual: The derived class destructor is called first (thus freeing its allocated objects correctly) before the trail of destruction heads up the chain of hierarchy, ending in the base class destructor. This is the intended correct behavior.

Here is a code example that illustrates this scenario:

override and final in C++

override and final are two new qualifiers introduced in C++11. The use of these qualifiers is optional. They are meant to be used with virtual methods to show the intention of the method. The compiler uses these qualifiers to check if your intention matches the actual ground truth in your code and throws a compile error if it does not. Thus, it helps to catch bugs earlier at compile time.

  • When you specify override for a method, you are indicating to the compiler that this is a virtual method and it is overriding a virtual method with the same signature in one of the base classes that the current class inherits from. If the method is not inheriting from any virtual method with the same signature, the compiler throws an error. Thus if you made a mistake in the function signature while defining this method, you would not have caught it unless you used this qualifier.

  • When you specify final for a method, you are indicating that this is a virtual method and that no class that inherits from the current class can override this method. If any method tries to override this method in an inherited class, the compiler throws an error.

  • If override or final are used with non-virtual methods, the compiler throws an error.

  • These qualifiers are specified after the function input arguments and should be specified after const if the virtual method is a const method. If you put these qualifiers before a const, you will get a weird error with GCC that gives no hint that this is because of the order of qualifiers is wrong!

  • These qualifiers are to be specified only with the method declaration. If you try to use them with the method definition, the compiler will throw an error.

  • You can specify override final for a method, but it is the same as using final.

  • override is not allowed to be used with the base virtual method. This is for the obvious reason that the base virtual method is the first virtual method and it is not overriding any other method.

  • final can be used with the base virtual method. This can be used to specify that the first base virtual method cannot be overridden in any inherited class.

This code example shows how to use these qualifiers: